PEN Academic Publishing   |  ISSN: 1554-5210

Original article | International Journal of Progressive Education 2019, Vol. 15(4) 1-15

Explanatory Strategies of Preservice Mathematics Teachers about Divisibility by Zero

Nejla Gürefe & Gülfem Sarpkaya Aktaş

pp. 1 - 15   |  DOI: https://doi.org/10.29329/ijpe.2019.203.1   |  Manu. Number: MANU-1812-07-0007

Published online: August 02, 2019  |   Number of Views: 54  |  Number of Download: 111


Abstract

In this study, it was aimed to reveal the explanatory strategies that preservice teachers use in the process of explaining the concept of divisibility by zero. It was investigated how the concept of divisibility by zero, which can be used in expressing the case where the denominator is present in the definition of important concepts of the secondary school curriculum such as the fraction and rational number, is defined and explained. A scale consisting of three open-ended questions, in which it was questioned what the definition of the concept of divisibility by zero is and how this concept can be explained to the secondary school/high school student, was used as a data collection instrument. The data were collected through this scale and the content analysis method was adopted in the data analysis. As a result of the analyses made, it was determined that the preservice teachers use the rule strategy the most on the subject of divisibility by zero.

Keywords: Zero number; strategies; preservice teachers


How to Cite this Article?

APA 6th edition
Gurefe, N. & Aktas, G.S. (2019). Explanatory Strategies of Preservice Mathematics Teachers about Divisibility by Zero . International Journal of Progressive Education, 15(4), 1-15. doi: 10.29329/ijpe.2019.203.1

Harvard
Gurefe, N. and Aktas, G. (2019). Explanatory Strategies of Preservice Mathematics Teachers about Divisibility by Zero . International Journal of Progressive Education, 15(4), pp. 1-15.

Chicago 16th edition
Gurefe, Nejla and Gulfem Sarpkaya Aktas (2019). "Explanatory Strategies of Preservice Mathematics Teachers about Divisibility by Zero ". International Journal of Progressive Education 15 (4):1-15. doi:10.29329/ijpe.2019.203.1.

References
  1. Arıkan, A. & Halıcıoğlu, S. (2012). Soyut Matematik [Abstract Mathematics]. Palme yayıncılık. [Google Scholar]
  2. Arsham, H. (2008). Zero in fourdimensions: Historical, psychological, cultural and logical. Retrieved January 02, 2018, from https://www.researchgate.net/profile/Dr_Hossein_Arsham/publication/252321603_Zero_in_Four_Dimensions_Historical_Psychological_Cultural_and_Logical_Perspectives/links/0deec529be358afe19000000.pdf [Google Scholar]
  3. Baki, M. (2013). Pre-service classroom teachers' mathematical knowledge and instructionalexplanationsassociatedwithdivision. Eğitim ve Bilim, 38(167), 300-311. [Google Scholar]
  4. Ball, D. L. (1990). The mathematicalunderstandingsthatprospectiveTeachersbring to teachereducation. The Elementary School Journal, 90(4), 449–466. [Google Scholar]
  5. Baştürk, S. & Dönmez, G. (2011). Matematik öğretmen adaylarının limit ve süreklilik konusuyla ilgili kavram yanılgıları. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED), 5(1), 225-249. [Google Scholar]
  6. Cankoy, O. (2010). Mathematics Teachers' Topic-Specific Pedagogical Content Knowledge in the Context of Teaching a°, 0! and a/0. Kuram ve Uygulamada Eğitim Bilimleri, 10(2), 749-769. [Google Scholar]
  7. Cofer,  T. (2015). Mathematical Explanatory Strategies Employed by Prospective Secondary Teachers. International Journal of Research in Undergraduate Mathematics Education, 1:63–90. [Google Scholar]
  8. Crespo, S. & Nicol, C. (2006). Challenging preservice teachers' mathematical understanding: The case of division by zero. School Science and Mathematics, 106(2), 84-97. [Google Scholar]
  9. Çelik, D. & Akşan, E. (2013). Matematik öğretmeni adaylarının sonsuzluk, belirsizlik ve tanımsızlık kavramlarına ilişkin anlamaları. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 7(1), 166-190. [Google Scholar]
  10. Eisenhart, M.,Borko, H., Underhill, R., Brown, C., Jones, D., & Argard, P., (1993). Conceptual knowledge falls through the cracks: Complexities of learning to teach mathematics for understanding. Journal of Research in Mathematics Education, 24, 8-40. [Google Scholar]
  11. Even, R. & Tirosh, D. (1995). Subject-Matter Knowledge and Knowledge about Students As Sources of Teacher Presentations of The Subject-Matter. Educational Studies in Mathematics, 29 (1), 1-20. [Google Scholar]
  12. Jaffar, S. M. & Dindyal, J. (2011). Language-relatedmisconceptions in the study of limits. In J. Clark, B. Kissane, J. Mousley, T. Spencer, & S. Thornton (Eds.), Proceedings of the 34th annualconference of the Mathematics Education Research Group of Australasia and the 23rd biennial conference of the Australian Association of Mathematics Teachers, Alice Springs, (pp. 390-397). Adelaide, SA: Aamt&Merga. [Google Scholar]
  13. Kadıoğlu,  E. & Kamali,  M.  (2009).  Genel  matematik.  Erzurum: Kültür Eğitim Vakfı Yayınevi. [Google Scholar]
  14. Kanbolat, O. (2010). Bazı Matematiksel Kavramlarla İlgili Epistemolojik Engeller. Yayınlanmamış Yüksek Lisans Tezi. Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon. [Google Scholar]
  15. Karakuş, F. (2017). İlköğretim matematik öğretmeni adaylarının öğretimsel açıklamalara ilişkin tercihleri: Sıfıra bölme konusu. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 8(3), 352-377. [Google Scholar]
  16. Keskin, C. (2016). Ortaokul Matematik 7 Ders Kitabı. ADA Matbaacılık Yayıncılık, Ankara. [Google Scholar]
  17. Kinach, B. M. (2002). Understanding and learning-to-explain by representing mathematics: Epistemological dilemmas facing teacher educators in the Secondary mathematics “methods” course. Journal of Mathematics Teacher Education, 5, 153–186. [Google Scholar]
  18. Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of Fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum. [Google Scholar]
  19. McDiarmid, G. W., Ball, D. L., & Anderson, C. (1989). Why Staying One Chapter Ahead Doesn't Really Work: Subject-Specific Pedagogy. In M. C. Reynolds (Ed.), Knowledge Base for the Beginning Teacher (pp. 193-205). Elmsford, NY: PergamonPress. [Google Scholar]
  20. Miles, M. B. & Huberman, A. M.  (1994). Qualitative data analysis: an expanded sourcebook. (2nd Edition). Calif: SAGE Publications.  [Google Scholar]
  21. Nesin, A. (2002). Matematik ve Sonsuz. http://www.alinesin.org/popular_math/S_7_matematik_ve_sonsuz.doc internet adresinden 15 Eylül 2017 tarihinde indirilmiştir.  [Google Scholar]
  22. Özmantar, F. (2008). Sonsuzluk Kavramı: Tarihsel Gelişimi, Öğrenci Zorlukları ve Çözüm Önerileri. Eds. M.F. Özmantar, E. Bingölbali ve H. Akkoç. Matematiksel Kavram Yanılgıları ve Çözüm Önerileri (s.151-180). Pegem Akademi, Ankara. [Google Scholar]
  23. Özmantar, M. F. & Bozkurt, A. (2013). Tanımsızlık ve belirsizlik: kavramsal ve geometrik bir inceleme. İ.Ö. Zembat, M. F. Özmantar, E. Bingölbali, Şandır, H. , & A. Delice (Edt.), Tanımları ve tarihsel gelişimleriyle matematiksel kavramlar (ss. 437-461) (1. Baskı). Ankara: Pegem Akademi. [Google Scholar]
  24. Reys, R. E. & Grouws, D. A (1975). Division Involving Zero: Some Revealing Thoughts from Interviewing Children. School Science and Mathematics, 78, 593-605. [Google Scholar]
  25. Shulman, L. S. (1986). ThoseWho Understand: Knowledge Growth in Teaching. Educational Researcher, 15(2), 4-14. [Google Scholar]
  26. Quinn, R. J., Lamberg, T. D. & Perrin, J. R. (2008). Teacher perceptions of division by zero. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 81(3), 101-104. [Google Scholar]
  27. Tsamir, P., Sheffer, R., & Tirosh, D.(2000). Intuitions and Undefined operations: The Cases of Division by Zero. Focus on Learning in Mathematics, 22 (1), 1–16. [Google Scholar]
  28. Zikre, N. M. & Eu, L.K. (2016) Malaysian Mathematics teachers’ beliefs about the nature of teaching and learning. The Malaysian Online Journal of Educational Science, 4(1), 21-29. [Google Scholar]