PEN Academic Publishing   |  ISSN: 1554-5210

Original article | International Journal of Progressive Education 2019, Vol. 15(4) 229-240

The Comparison of Item Parameters Estimated From Parametric and Nonparametric Item Response Theory Models in Case of The Violance of Local Independence Assumption

Ezgi Mor Dirlik

pp. 229 - 240   |  DOI: https://doi.org/10.29329/ijpe.2019.203.17   |  Manu. Number: MANU-1810-21-0004.R1

Published online: August 02, 2019  |   Number of Views: 10  |  Number of Download: 20


Abstract

Item response theory(IRT) has so many advantages than its precedent Classical Test Theory(CTT) such as non-changing item parameters, ability parameter estimations free from the items. However, in order to get these advantages, some assumptions should be met and they are; unidimensionality, normality and local independence. However, it is not always so easy to be met these assumptions by datasets. Especially when the normality of data is not provided, another approach for IRT can be applied, which is Non-Parametric Item Response Theory (NIRT). NIRT provides more flexible methods to scale datasets and it is used when the assumptions of Parametric Item Response Theory (PIRT) are not met at a satisfactory level. The assumption of local independence, is one of the situations in which NIRT can be used more effectively than PIRT. In this study, by using a real dataset, taken from TIMSS 2011, the effect of local dependence on the item parameters was investigated.  With this goal, a dataset composed of 1,000 students was formed randomly from the TIMSS 2011 eight grade Mathematic test. Firstly, the item parameters were calculated from data set according to the two approaches without any manipulation. After that, two items were arranged as local dependent by changing the response patterns completely the same and the item parameters have been estimated from each sample by using R program, ltm and mokken packages. Two sets of item parameters estimated from data set were compared and the differences of the parameters were analyzed with statistical test.  By this way, the effect of local independence has been analyzed on the item parameters have been decided.

Keywords: Local Independence, Item Parameters, Parametric Item Response Theory, Non-Parametric Item Response Theory


How to Cite this Article?

APA 6th edition
Dirlik, E.M. (2019). The Comparison of Item Parameters Estimated From Parametric and Nonparametric Item Response Theory Models in Case of The Violance of Local Independence Assumption . International Journal of Progressive Education, 15(4), 229-240. doi: 10.29329/ijpe.2019.203.17

Harvard
Dirlik, E. (2019). The Comparison of Item Parameters Estimated From Parametric and Nonparametric Item Response Theory Models in Case of The Violance of Local Independence Assumption . International Journal of Progressive Education, 15(4), pp. 229-240.

Chicago 16th edition
Dirlik, Ezgi Mor (2019). "The Comparison of Item Parameters Estimated From Parametric and Nonparametric Item Response Theory Models in Case of The Violance of Local Independence Assumption ". International Journal of Progressive Education 15 (4):229-240. doi:10.29329/ijpe.2019.203.17.

References
  1. Balazs, K., & De Boeck, P. (2006). Detecting local item dependence stemming from minor dimensions: Interuniversity Attraction Pole statistics network [technical report]. [Google Scholar]
  2. Brown, T. A. (2006). Confirmatory factor analysis for applied research. (First Edition). NY: Guilford Publications, Inc.  [Google Scholar]
  3. Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22(3), 265-289. [Google Scholar]
  4. Chen, C. T., & Wang, W. C. (2007). Effects of ignoring item interaction on item parameter estimation and detection of interacting items. Applied Psychological Measurement, 31(5), 388-411. [Google Scholar]
  5. Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. Holt, Rinehart and Winston, 6277 Sea Harbor Drive, Orlando, FL 32887. [Google Scholar]
  6. Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press. [Google Scholar]
  7. Gulliksen. H. (1950). Theory of mental tests. New York: Wiley. [Google Scholar]
  8. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory (Vol. 2). Sage. [Google Scholar]
  9. Hambleton, R. K., & Swaminathan, H. (1985). 1985: Item response theory: principles and applications. Boston, MA: Kluwer-Nijhoff. [Google Scholar]
  10. Henning, G. (1989). Meanings and implications of the principle of local independence. Language Testing, 6(1), 95-108. [Google Scholar]
  11. Junker, B. W. (1991). Essential independence and likelihood-based ability estimation for polytomous items. Psychometrika, 56(2), 255-278. [Google Scholar]
  12. Junker, B. W. (2001). On the interplay between nonparametric and parametric IRT, with some thoughts about the future. In Boomsma A., et al. (Eds.) Essays on Item Response Theory. New York: Springer-Verlag. [Google Scholar]
  13. Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language. Scientific Software International. [Google Scholar]
  14. Kline, R. B. (2005). Principles and practice of structural equation modelling. (Second Edition). NY:Guilford Publications, Inc.  [Google Scholar]
  15. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale NJ: Erlbaum. [Google Scholar]
  16. Lord, F. M.& Novick, M.R. (1968). Statistical theories of mental test scores. Reading, MA: Addison-Wesley. [Google Scholar]
  17. Meijer, R. R., Tendeiro, J. N., & Wanders, R. B. (2014). The use of nonparametric item response theory to explore data quality. In Handbook of Item Response Theory Modeling (pp. 103-128). Routledge. [Google Scholar]
  18. Meijer, R. R.. Sijtsma, K and Smidt, N. G.  (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement. 14. 283–298 [Google Scholar]
  19. Mor Dirlik, E. (2017). The Comparison of Item and Ability Estimations Calculated From The Parametric And Non-Parametric Item Response Theory According To The Several Factors. Unpublished Doctoral Dissertion. Institute of Educational Sciences, Ankara University. [Google Scholar]
  20. Sireci, S. G., Thissen, D., & Wainer, H. (1991). On the reliability of testlet‐based tests. Journal of Educational Measurement, 28(3), 237-247. [Google Scholar]
  21. Sijtsma, K., & Meijer, R. R. (2007). Nonparametric item response theory and related topics. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics, vol. 26: Psychometrics (pp. 719–746). Amsterdam: Elsevier, North Holland. [Google Scholar]
  22. Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory (Vol. 5). Sage. [Google Scholar]
  23. Sijtsma K, Molenaar IW (2002). Introduction to Nonparametric Item Response Theory. Sage, Thousand Oaks, CA. [Google Scholar]
  24. Stout, W. (1990). A new item response theory modeling approach with applications to unidimensionality assessment and ability estimation. Psychometrika, 55,293-325. [Google Scholar]
  25. Tuerlinckx, F., De Boeck, P., & Lens, W. (2002). Measuring needs with the Thematic Apperception Test: A psychometric study. Journal of Personality and Social Psychology, 82(3), 448. [Google Scholar]
  26. Van Der Linden, W. J., & Hambleton, R. K. (1997). Item response theory: Brief history, common models, and extensions. In Handbook of modern item response theory (pp. 1-28). Springer, New York, NY. [Google Scholar]
  27. Van Schuur, W. H. (2011). Ordinal item response theory: Mokken scale analysis (Vol. 169). Sage. [Google Scholar]
  28. Vermunt, J. K., & Magidson, J. (2004). Local independence. Encyclopedia of social sciences research methods, 732-733. [Google Scholar]
  29. Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8(2), 125-145. [Google Scholar]
  30. Yen, W. M. (1993). Scaling performance assessments: Strategies for managing local item dependence. Journal of educational measurement, 30(3), 187-213. [Google Scholar]