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Abstract 

In this study, it is aimed to investigate the effects of various factors on the performance of the methods 

used in the determination of differential item functioning (DIF) in the DINA model included in the 

Cognitive Diagnosis Models. The current study is limited with Logistic Regression and Wald test 

methods which were used to determine the differential item functioning in DINA model. The Type I 

error and power rates of these methods in certain conditions were investigated to evaluate their 

performances. In the simulation study for the Type I error rates, four variables were manipulated: 

sample sizes, the number of attributes, correlations between attributes and reference group s and g 

parameter values. In the determination of the power rates of the methods, additionally, the variables 

that were manipulated in the Type I error study, DIF sizes and percentages of DIF items were 

manipulated, too. As a result, it was observed that especially in all cases where reference group’ s and 

g parameter values are low, both methods yielded a good control of Type I error rates. In addition, 

according to the results, it was observed that both DIF size and sample size affect the power rates of 

both methods. 
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INTRODUCTION 

In recent years, Cognitive Diagnostic Models (CDMs) have been widely used in education and 

psychology. CDMs are models that provide information about the strengths and weaknesses of 

individuals in specific areas. CDMs are latent variable models developed primarily for assessing 

student mastery and non-mastery on a set of finer-grained skills (de la Torre, 2011). The results 

obtained from CDMs provides detailed feedback to the examinees or teacher, so they can make 

inferences about examinees’ mastery of different cognitive skills. 

Most CDMs applications require the construction of a Q-matrix (Embretson, 1984; Tatsuoka, 

1985, de la Torre, 2009). The relationship between items and attributes is specified in the Q-matrix, 

which is a matrix with j rows and k columns of ones and zeros.  qjk  is an element of Q matrix for j 

items and k attributes indicates whether mastery of attribute k is required by item j. qjk = 1, if item j 

requires attribute k, and 0 otherwise. 

When the related literature was investigated, several CDMs have been developed for assessing 

examinees' mastery or non-mastery of a set of cognitive attributes (Haertel, 1989; Dibello et al., 1995; 

Junker & Sijtsma, 2001; Hartz, 2002; de la Torre & Douglas, 2004; Templin & Henson, 2006; 

Templin, Henson & Douglas, 2006; Henson, Templin, & Willse, 2009). In this study, the 

deterministic, inputs, noisy "and" gate (DINA) model, which is one of the most widely used non-

complementary models developed by Haertel (1989), was used. DINA model assumes examinees must 

have mastered a set of attributes required by an item in order to answer the item correctly. The DINA 

is a simple model that is easily estimated and the item response function is given by 

 (     |   )        
    

 

(     )
   (1)      

where P denotes the probability of solving the item when examinees possess all of the required skills. 

Xij denotes the response of an examinee i to item j, where Xij = 1 is the correct response (Xij = 0 

otherwise). gj denotes guessing parameter and sj denotes slipping parameters for the jth item. The slip 

parameter is interpreted as the probability that examinee who possesses all the required attributes for 

an item answers the item incorrectly (de la Torre ve Lee, 2010). The guessing parameter is the 

probability that examinee who lacks at least one of the required attributes for an item answers the item 

correctly (de la Torre ve Lee, 2010). When a slip parameter is low, the examinee has a higher 

probability of answering the item correctly. ηij is the deterministic latent response and it is given by 

    ∏  
  

    
                                                 (2)   

qjk = assumes 1 or 0, αik = 1 or 0, represents if examinee i mastered attribute k. If ηij = 1, represents 

examinee i possesses all the attributes required for item j, and ηij = 0 represents examinee i lacks at 

least one of the attributes required for item j. 

Differential Item Functioning  

Analysis for detecting Differential Item Functioning (DIF) has been increasingly applied in 

test fairness studies. DIF occurs when individuals at the same ability level but in different subgroups 

differ in their probability of answering an item correctly (Zumbo, 1999; Hambleton, Swaminathan, & 

Rogers, 1991). In the DIF analysis, the group which is thought to be disadvantagous is called focal 

group while the advantageous group compared with the performance of this group is called the 

reference group. DIF can occur in two different ways and the first is the uniform DIF. Uniform DIF 

indicates that the difference in the probability of answering an item correctly is consistent at all levels 

of ability. The second is the non-uniform DIF and implies that the difference in the probability of 

responding correctly is different for all ability level range (Camilli & Shepard, 1994; Zumbo, 1999). In 

order to determine DIF many methods have been developed within the context of both Classical Test 

Theory (CTT) and Item Response Theory (IRT). While methods such as Mantel-Haenszel (MH), 
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Logistic Regression (LR) and the simultaneous item bias test (SIBTEST) are investigated under CCT, 

the methods such as likelihood ratio test, Lord 𝜒2 and Raju’s area measurements are investigated under 

IRT (Raju, 1988; Hambleton, Swaminathan & Rogers, 1991; Rogers & Swaminathan, 1993; Camilli 

& Shepard, 1994; Osterlind, 1983). 

In CDMs, DIF occurs when individuals with different groups but with the same attribute 

mastery profile differ in their probability of responding correctly to the item. For the DINA model, 

DIF occurs when different estimates obtained for the slip and guess parameters for the individuals in 

the focal and reference groups. Uniform DIF occurs in item j when     and     have the same signs 

(Hou et al., 2014); 

                    

                    
              (3) 

 

 
                    

                    
                (4) 

When Equation 3 is investigated, uniform DIF in item j occurs when the slip parameter in the 

focal group is smaller than the slip parameter in the reference group and the guessing parameter in the 

focal group is larger than the guessing parameter in the reference group. When Equation 4 is 

investigated, uniform DIF in item j occurs when the slip parameter in the focal group is larger than the 

slip parameter in the reference group, and the guessing parameter is smaller than the guessing 

parameter in the reference group. 

Nonuniform DIF occurs in item j when    and     have different signs (Hou et al., 2014); 

                    

                    
            (5)   
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When Equation 5 and 6 are investigated, nonuniform DIF in item j occurs when both the slip 

and guess parameters in the focal group are smaller than the reference group or when both the slip and 

guess parameters in the focal group are larger than the reference group. 

When the relevant literature is investigated, it was observed that there is a limited study on 

DIF in CDM framework (Zhang, 2006; Li, 2008; Hou et al., 2014; Li and Wang, 2015). Zhang (2006) 

studied DIF in the DINA model using Mantel-Haenszel and SIBTEST methods in both real and 

simulation data. Four variables were manipulated in the simulation study: sample sizes, types of DIF, 

levels of DIF amount, and correlations between skill attributes. It was observed that attribute pattern 

matching had lower Type I error rates and higher power rates than the traditional total test score 

matching under the comparable test conditions. Li (2008) used a modified higher order DINA model 

to investigate DIF and differential attribute functioning (DAF). Five factors were manipulated in the 

simulation study: Q-matrix structure, attribute discrimination parameters, sample size, ability 

distribution difference, scenarios of DIF and DAF combination. For DIF detection, the model-based 

method was also compared with the MH method using a total score as the matching criterion and an 

attribute profile as the matching criterion. It was observed that the recovery of item parameters was 

generally better than the recovery of attribute parameters. In addition, it was observed that,  model-

based method had better Type I error rates and had higher power rates than the Mantel–Haenszel. Hou 
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et al. (2014) used a DINA model to investigate the effectiveness of the Wald test in detecting DIF. 

They compare the Wald test with both Mantel–Haenszel and SIBTEST procedures. The sample size, 

reference item parameters, DIF size, and DIF type were manipulated in the simulation study. They 

found that the performance of the Wald test was not affected by the proportion of DIF items in the test 

and both for small and large sample sizes the Wald test has Type I error rates close to the nominal 

level. Li and Wang (2015), developed a general CDM-based method for DIF assessment. They were 

compared performance of LCDM-DIF and Wald methods. When two groups were investigated, they 

found that when tests were clean, both methods yielded a good control of Type I error rates When all 

items were DIF, the power rates of the LCDM-DIF method were higher than the power rates of the 

Wald method with two groups. When three groups were investigated, they found that, the LCDM-DIF 

method had a good control of Type I error rates under all conditions, however, even if the tests were 

clean, the Type I error rates of the Wald test were higher. 

In this study, it is aimed to investigate the effect of various factors on the performance of the 

methods used in the determination of differential item functioning in the DINA model. When the 

related literature is investigated, it is considered that this study will contribute to the field since it has 

investigated different factors and factors' levels.  

METHOD 

Simulation Design 

Sample Size: Zhang (2006) used the equal sample sizes of 400 and 800 for focal and reference 

groups in his simulation study. Other than this study, Li (2008), Hou et al. (2014), Li and Wang (2015) 

simulated equal sample sizes (500 and 1000) for focal and reference groups. In this study, three 

sample sizes, 500, 1000 and 2000 were used for each group, in order to compare the results of the 

current study with the related literature. 

Correlation Between Attributes: When the studies about CDM and DIF are investigated, it 

was observed that in some studies the correlation between the attributes were kept constant (e.g. Hou 

et al. 2014; Li and Wang, 2015), and in some studies this factor is manipulated in various ways (e.g. 

Zhang, 2006). In this study, correlations between attributes were manipulated as low (0.2), medium 

(0.5) and high (0.8). 

Number of Attribute and Item: Zhang (2006) and Li (2008) used a test which contains 5 

attributes and 25 items in their study. However, Hou et al. (2014) used a test of 5 attributes and 30 

items, Li and Wang (2015) used 5 attributes, 30 and 50 items in their studies. In this study, the number of 

items was fixed to 30, and the number of attributes was manipulated as 4 and 5. Q matrices were generated 

according to the number of attributes. Q matrices were generated in such a way that a maximum of three 

attributes is observed in an item.The generated Q matrices are shown in Table 1. 

s and g parameter Values of the Reference group: In this study, s and g parameter values of 

the reference group were manipulated as three levels: 0.1, 0.2 and 0.3. 

DIF type and size: Magnitude of DIF varies according to the models used in the studies. DIF 

size levels of this study is similar to Zhang’s (2006), and Hou et al.'s (2014) studies such as (   or      

= .05) for small DIF size and (   or     = .10) for large DIF size. 

Percentage of DIF Items: Related studies indicate that the percentage of DIF items in an 

overall test, affects the performance of DIF detection methods (Zhang, 2007; Hou et al., 2014). In this 

study, the percentage of DIF items in the test was manipulated as 10% and 20%. 

DIF Detection Methods: In this study, DIF was limited by using LR and Wald methods. 
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Table 1: Q-Matrices for the Simulated Data 

 
Q1  Q2 

Attribute  Attribute 

Item 1 2 3 4 Item 1 2 3 4 5 

1 1 0 0 0 1 1 0 0 0 0 

2 1 0 0 0 2 0 1 0 0 0 

3 1 0 0 0 3 0 0 1 0 0 

4 0 1 0 0 4 0 0 0 1 0 

5 0 1 0 0 5 0 0 0 0 1 

6 0 1 0 0 6 1 0 0 0 0 

7 0 0 1 0 7 0 1 0 0 0 

8 0 0 1 0 8 0 0 1 0 0 

9 0 0 0 1 9 0 0 0 1 0 

10 0 0 0 1 10 0 0 0 0 1 

11 1 1 0 0 11 1 1 0 0 0 

12 1 1 0 0 12 1 0 1 0 0 

13 1 0 1 0 13 1 0 0 1 0 

14 1 0 1 0 14 1 0 0 0 1 

15 1 0 0 1 15 0 1 1 0 0 

16 1 0 0 1 16 0 1 0 1 0 

17 0 1 1 0 17 0 1 0 0 1 

18 0 1 1 0 18 0 0 1 1 0 

19 0 1 0 1 19 0 0 1 0 1 

20 0 1 0 1 20 0 0 0 1 1 

21 0 0 1 1 21 1 1 1 0 0 

22 1 1 1 0 22 1 1 0 1 0 

23 1 1 1 0 23 1 1 0 0 1 

24 1 1 0 1 24 1 0 1 1 0 

25 1 1 0 1 25 1 0 1 0 1 

26 1 0 1 1 26 1 0 0 1 1 

27 1 0 1 1 27 0 1 1 1 0 

28 0 1 1 1 28 0 1 1 0 1 

29 0 1 1 1 29 0 1 0 1 1 

30 1 1 1 0 30 0 0 1 1 1 

 

Data Generation and Analysis 

In this study, data were generated according to DINA model. To generate data, the number of 

items was set to 30, and Q matrices were formed with the number of attributes which is 4 and 5. s and 

g parameter values of the reference and focal groups were manipulated into three levels such as 0.1, 

0.2 and 0.3. To determine the Type I error rates of the methods, three sample sizes (500, 1000 and 

2000), two number of attributes (4 and 5), three correlation between attribute levels (0.2, 0.5 and 0.8) 

and three reference group item parameters (0.1, 0.2 and 0.3) were manipulated. The sample sizes were 

formed as equal in the reference and focal groups. In the determination of the power rates of the 

methods, in addition to the variables that were manipulated in the Type I error study, two DIF sizes 

(0.05 and 0.1) and two DIF item percentages (10% and 20%) were manipulated, too.  The slip and the 

guessing parameter values for the focal group were manipulated according to the DIF size. DIF items 

were generated according to the percentage of DIF. While forming DIF items, the number of 

attributes, which is required for that item, was also considered for balancing. For example, 3 DIF items 

were generated for 10% condition.  One of them was requiring 1 attribute, the other one was requiring 

2 attributes and the last one was requiring 3 attributes. For 20% condition, the number of items were 

doubled for each requirement case. In this study, only uniform DIF type has been investigated and the 

summary of DIF conditions is shown in Table 2. 100 replications were conducted for each crossing 
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condition. R 3.5.1 was used as the programming language and CDM, GDINA and difR package were 

used for data generation and data analysis. 

For Type I error rates, the false positive rates for items, which were detected incorrectly as 

DIF items, were reported over 100 replications. However, in power study the true positive rates were 

obtained for determining items, which perform differently on different groups of examinees.  

Table 2: Summary of DIF Conditions 

DIF Type DIF Size     (    -    )          -    ) 

Non- DIF - 0 0 

Uniform Small +0.05 +0.05 

-0.05 -0.05 

Large +0.1 +0.1 

-0.1 -0.1 

 

FINDINGS 

Type I Error Study 

The results of the effects of various sample sizes on the Type I error rates of methods are 

shown in Graph 1. When Graph 1 was investigated, it was observed that the Type I error rates of the 

Logistic Regression method were not affected by the increase in sample size for all s and g parameter 

values. However, in cases where s and g parameter values were 0.1 and 0.2, the Type I error rates of 

the Wald test method were not effected with the increase in sample size. When the s and g parameter 

value was 0.3, it was observed that the Type I error rates of the Wald test method decreased 

dramatically with the increasing sample size. Also, when the s and g parameter values were 0.1 and 

0.2, the Type I error rates of the Wald test method were lower than the Type I error rates of the LR 

method in all sample sizes. However, when the s and g parameter value was 0.3, the Type I error rates 

of Wald test were larger than the Type I error rates of the LR method.  

 
Graph I: The Effect of the Sample Sizes on Type I Error Rates of Methods 

The results of the effects of the number of attributes on the Type I error rates of methods are 

shown in Graph 2. According to Graph 2, especially when the s and g parameter values were 0.1 and 

0.2, it was observed that the Type I error rates of the methods did not change much with the increase 

in the number of attributes. However, when the s and g parameter value was 0.3, the Type I error rates 

of the Wald test method increased with the increase in the numbers of attributes. In the case where s 
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and g parameter values were 0.1 and 0.2 for both numbers of attributes (4 and 5), the Type I error rates 

of the Wald test method were smaller than the Type I error rates of the LR method. 

 
Graph 2: The Effect of the Number of Attributes on Type I Error Rates of Methods 

The results of the effects of the correlation between attributes on the Type I error rates of 

methods are shown in Graph 3. When Graph 3 was investigated, it was observed that the Type I error 

rates of the methods did not change much with the increase in correlation levels between the attributes. 

However, when the s and g parameter values were 0.1 and 0.2, the Type I error rates of the Wald test 

method were lower than the Type I error rates of the LR method for all correlation levels. In the case 

where s and g parameter value was 0.3, a significant increase was observed for the Type I error rates 

of the Wald test method in this case the Type I error rates of the Wald test method were higher than 

the Type I error rates of the LR method. 

 
Grafik 3: The Effect of the Correlation between Attributes on Type I Error Rates of Methods 

Results of the Type I error rates of the methods according to all the manipulated factors shown 

in Table 3 and Graph 4. When Graph 4 was investigated, it was observed that the s and g parameter 

values were effective for Type I error rates of the Wald test method. According to Graph 4, especially 

in cases where the s and g parameter values were 0.1 and 0.2, the Type I error rates of the Wald test 
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method were lower than the Type I error rates of the LR method for all conditions. In contrast, in the 

case where s and g parameter value was 0.3, it was observed that the Type I error rates of the LR 

method were lower than the Type I error rates of the Wald test method. When the s and g parameter 

value was 0.3, it was observed that the Type I error rates of the Wald test method increased with the 

increase in the number of attributes and the decrease in the sample size. In addition to that, the Type I 

error rates of the LR method did not change much with the increase in the sample size. 

Tablo 3: Type I Error Rates 

   DIF Detection Method 

   Sample Size 

   LR Wald 
Reference Item 

Parameter 

Values 

Number of 

Attribute 

Correlation NR = 500  

NF = 500  

NR = 1,000 

NF = 1,000 

NR = 2,000 

NF = 2,000 

NR = 500 

NF = 500  

NR = 1,000 

NF = 1,000 

NR = 2,000 

NF = 2,000 

gRj= sRj= 0.1 4 0.2 0.055 0.055 0.051 0.013 0.026 0.044 

0.5 0.053 0.051 0.049 0.016 0.030 0.038 

0.8 0.047 0.042 0.054 0.009 0.026 0.041 

5 0.2 0.050 0.056 0.050 0.013 0.037 0.038 

0.5 0.057 0.056 0.050 0.015 0.033 0.038 

0.8 0.055 0.058 0.056 0.012 0.031 0.042 

gRj= sRj= 0.2 4 0.2 0.050 0.050 0.052 0.028 0.037 0.041 

0.5 0.047 0.049 0.048 0.027 0.033 0.045 

0.8 0.043 0.045 0.038 0.025 0.043 0.050 

5 0.2 0.051 0.051 0.055 0.039 0.046 0.050 

0.5 0.048 0.048 0.041 0.035 0.050 0.046 

0.8 0.057 0.050 0.048 0.027 0.045 0.051 

gRj= sRj= 0.3 4 0.2 0.046 0.057 0.046 0.192 0.148 0.094 

0.5 0.049 0.048 0.050 0.195 0.162 0.098 

0.8 0.046 0.049 0.052 0.128 0.183 0.139 

5 0.2 0.051 0.049 0.050 0.336 0.291 0.174 

0.5 0.053 0.050 0.047 0.280 0.278 0.168 

0.8 0.049 0.042 0.050 0.201 0.291 0.229 

 

  
Graph 4: The Interaction Effect of Factors on Type I Error Rates of Methods 

Power Study 

The results of various sample sizes on the power rates of the methods are shown in Graph 5. 

According to Graph 5, it was observed that, the power ratios of both methods were increasing with the 

increase in sample size. When the s and g parameter values increase, there is a decrease in the power 

rates of the LR method. For the condition in which s and g parameter value was 0.1 and the sample 

size was 500, it was observed that, the power rates of the Wald test method were lower than the power 

rates of the LR method. However, when the sample size was 1000, it was observed that the power 
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rates of the methods were similar, whereas when the sample size was 2000, it was observed that the 

power rates of the Wald test method were higher than the power rates of the LR method. Also, when 

the s and g parameter values were 0.2 and 0.3, it was observed that, the power rates of the Wald test 

were higher than the LR method for all sample sizes. 

 
Graph 5: The Effect of the Sample Sizes on Power Rates of Methods 

The results of the power rates of the methods with the different number of attributes were 

shown in Graph 6. According to Graph 6, it was observed that, the power rates of the Wald test 

method did not change much with the increase in the number of attributes, but the power rates of the 

LR method decreased. When the s and g parameter value was 0.1, it was observed that, the Type I 

error rates of the Wald test method was lower than the Type I error rates of the LR method for all 

number of attributes, but the s and g parameter values were 0.2 and 0.3, the Type I error rates of the 

Wald test method was higher than the Type I error rates of the LR method for all number of attributes. 

 
Graph 6: The Effect of the Number of Attributes on Power Rates of Methods 
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The results of the effects of the correlation between attributes on the power rates of methods 

were shown in Graph 7. According to Graph 7, the correlation levels between the attributes did not 

change the power rates of the Wald test. However, the power rates of the LR method increased with 

the increase in the correlation between the attributes. When the s and g parameter value was 0.1 and 

the correlation level between attributes were 0.2, the power rates of the Wald test method seem to be 

higher than the LR method. On the contrary, in cases where the correlation between the attributes were 

0.5 and 0.8, the power rates of the LR method were higher than the power rates of the Wald test 

method. When s and g parameter values were 0.2 and 0.3, the power rates of the Wald test method 

were higher than the power rates of the LR method for all correlation levels between attributes. For all 

correlation levels between attributes, the power rates of LR method decreased with the increase of s 

and g parameter values. 

 
Graph 7: The Effect of the Correlation between Attributes on Power Rates of Methods 

The results of the effects of the percentage of DIF items on the power rates of methods were 

shown in Graph 8. According to the Graph 8, when the s and g parameter value was 0.1, the power 

rates of the Wald test method were lower than the power rates of the LR method for both percentages 

of DIF items. When the s and g parameter values were 0.2 and 0.3, the power rates of the Wald test 

method were higher than the power rates of the LR method for both percentages of DIF items. For all 

percentage of DIF items, when the s and g parameter values increased, there was a decrease in the 

power rates of the LR method while there were slight differences in the power rates of the Wald test 

method. 

 
Graph 8: The Effect of the Percentage of DIF Items on Power Rates of Methods 



International Journal of Progressive Education, Volume 15 Number 4, 2019  

© 2019 INASED 

 

184 

The results of the effects of the DIF sizes on the power rates of methods were shown in Graph 

9. When the Graph 9 was investigated, it was observed that the power rates of the methods increased 

as DIF sizes increased for all the s and g parameters values. In addition to that, for all s and g 

parameters values and DIF sizes, the power rates of the Wald test method were higher than the LR 

method. 

 
Grafik 9: The Effect of the DIF Size on Power Rates of Methods 

CONCLUSION AND DISCUSSION 

In this study, it was aimed to investigate the effects of various factors on the performance of 

the methods used in the determination of DIF in the DINA model. For this purpose, invariance of slip 

and guess parameters for focal and reference subgroups needed to be investigated. In order to 

determine DIF in the DINA model, several methods exist in the literature. Usability of these methods 

may vary according to several conditions and performance of these methods also need to be 

investigated accross these conditions.  

In the DINA model, Logistic Regression and Wald test methods were the common methods 

which were used to determine the differential item functioning, and the Type I error and power rates of 

these methods in certain conditions needed to be investigated. In determining the Type I error rates of 

the methods, three sample sizes (500, 1000 and 2000), two number of attributes (4 and 5), three 

correlation between attributes levels (0.2, 0.5 and 0.8) and three reference group item parameters (0.1, 

0.2 and 0.3) were manipulated. When the results obtained from the Type I error rates of the methods 

were investigated, it was observed that especially the s and g parameter values were effective factors 

on the Type I error rates of the methods. When the s and g parameter value was 0.3, it was observed 

that the Type I error rates of the Wald test method increased. It is consistent with the results of Hou et 

al. (2014).  When the s and g parameter values were 0.1 and 0.2, it was observed that both the LR and 

the Wald test Type I error rates were close to each other. It was observed that the Type I error rates of 

the Logistic Regression method were not affected by the increase in sample size. However, when the s 

and g parameter value was 0.3, it was observed that the Type I error rates of Wald test method 

decreased dramatically with the increase in sample size and increased dramatically with the increase in 

the number of attributes. In addition to these, it was observed that the correlation between the 

attributes did not cause much change in the Type I error rates of the methods. 

When the results of the power rates of the methods were investigated, it was observed that 

especially the sample sizes, DIF sizes and the s and g parameter values were effective factors. It is 

consistent with the results of Hou et al. (2014). The power rates of both methods increased with 

increasing sample size. It was observed that the increase in the percentage of DIF items did not change 

the power ratios of both methods. As the number of attributes increased, the power rates of the Wald 
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test method did not change much, but the power rates of the LR method decreased. While the level of 

correlation between attributes did not change the power rates of the Wald test method much, the power 

rates of the LR method increased with the increase in the correlation between the attributes. 

In conclusion, it can be said that the Wald test method showed satisfactory results to detect 

DIF in many different conditions in the Cognitive Diagnostic Models. However, when the Wald test 

method is compared with the LR method, under some simulation conditions (i.e., when the s and g 

parameter values are high) the Wald test has inflated Type I error rates but in many conditions, it 

shows high power rates. 

In this study, only the DINA model was used to simulate DIF conditions, differential item 

functioning can be investigated in further studies, by using other CDM models (DINO, GDINA etc.). 

In further studies, different DIF detection techniques can be used and the performances of these 

methods can be compared. In addition, further studies will be conducted with different factors or factor 

levels. 
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