International Journal of Progressive Education
Abbreviation: IJPE | ISSN (Print): 1554-5210 | DOI: 10.29329/ijpe

Original article | International Journal of Progressive Education 2021, Vol. 17(3) 343-360

Use of 3D Printers for Teacher Training and Sample Activities

Ayten Arslan & Ibrahim Erdogan

pp. 343 - 360   |  DOI: https://doi.org/10.29329/ijpe.2021.346.22

Published online: June 07, 2021  |   Number of Views: 2  |  Number of Download: 16


Abstract

The aim of this study was to determine the effects of 3D (3-dimensional) printing activities on pre-service teachers’ self-efficacy in technological pedagogical content knowledge (TPCK) and their views of 3D printing activities. The study sample consisted of 39 students of science education, classroom teaching and preschool teaching departments of the faculty of education. An exploratory sequential mixed method design was used. In the quantitative part, a one group pre-test post-test design was used, and data were analysed using statistical methods. In the qualitative part, phenomenology was used, and data were analysed using content analysis. Results showed that 3D printing activities improved participants’ self-efficacy in TPCK. Participants stated that 3D printers helped them develop skills in many areas and that 3D printer teaching materials contributed to both learning and teaching. The majority of participants had positive views on the effect of 3D objects on learning. They stated that 3D objects turned abstract concepts into concrete visual representations, facilitated learning, made lessons enjoyable, provided learning retention, encouraged them to learn more about their fields, increased their interest, and helped them develop creative thinking and design skills, and thus, create different content-specific educational materials.

Keywords: 3D Printers, Technological Pedagogical Content Knowledge, Teacher Training, Mixed Research Design


How to Cite this Article?

APA 6th edition
Arslan, A. & Erdogan, I. (2021). Use of 3D Printers for Teacher Training and Sample Activities . International Journal of Progressive Education, 17(3), 343-360. doi: 10.29329/ijpe.2021.346.22

Harvard
Arslan, A. and Erdogan, I. (2021). Use of 3D Printers for Teacher Training and Sample Activities . International Journal of Progressive Education, 17(3), pp. 343-360.

Chicago 16th edition
Arslan, Ayten and Ibrahim Erdogan (2021). "Use of 3D Printers for Teacher Training and Sample Activities ". International Journal of Progressive Education 17 (3):343-360. doi:10.29329/ijpe.2021.346.22.

References
  1. Akkaya, E. (2009). Matematik öğretmen adaylarının türev kavramına ilişkin teknolojik pedagojik alan bilgilerinin öğrenci zorlukları bağlamında incelenmesi [Investigation of prospective mathematics teachers' technological pedagogical content knowledge regarding derivative concept in the context of student challenges.] (Unpublished master’s thesis). Marmara University. [Google Scholar]
  2. Archambault, L., & Crippen, K. (2009). Examining TPACK among k-12 online distance educators in the United States. Contemporary Issues in Technology and Teacher Education, 9(1), 71–88. [Google Scholar]
  3. Baki, A. (2002). Bilgisayar destekli matematik, [Computer aided mathematics]. İstanbul: Ceren Yayın Dağıtım. [Google Scholar]
  4. Berman, B. (2012). 3-D printing: The new industrial revolution. Business Horizons, 55(2), 155-162. doi: 10.1016/j.bushor.2011.11.003 [Google Scholar] [Crossref] 
  5. Bilici, S., & Güler, Ç. (2016). Ortaöğretim öğretmenlerinin TPAB düzeylerinin öğretim teknolojilerini kullanma durumlarına göre incelenmesi. [Examining TPACK levels of secondary education teachers according to their use of instructional technologies]. Elementary Education Online, 15(3), 898-921. [Google Scholar]
  6. Buehler, E., Kane, S. K., & Hurst, A. (2014). ABC and 3D: opportunities and obstacles to 3D printing in special education environments. Proceedings of the 16th international ACM SIGACCESS Conference on Computers & Accessibility, 107-114. doi: 10.1145/2661334.2661365 [Google Scholar] [Crossref] 
  7. Byun, M. K., Jo, J. H., & Cho, M. H. (2015). The analysis of learner's motivation and satisfaction with 3D printing in science classroom. Journal of the Korean Association for Science Education, 35(5), 877-884. doi: 10.14697/jkase.2015.35.5.0877 [Google Scholar] [Crossref] 
  8. Canbazoğlu Bilici, S. (2012). Fen bilgisi öğretmen adaylarının teknolojik pedagojik alan bilgisi ve özyeterlikleri [Technological pedagogical content knowledge and self-efficacy of science teacher candidates] (Unpublished doctoral dissertation). Gazi University. [Google Scholar]
  9. Cano, L. M. (2015). 3D printing: A powerful new curriculum tool for your school library. California: ABC-CLIO, LLC. [Google Scholar]
  10. Creswell, J. W. & Plano-Clark, V. L. (2015). Karma yöntem araştırmalarının tasarımı ve yürütülmesi (Çev. Eds. Y. Dede ve S. B. Demir). Ankara: Anı Yayıncılık. [Google Scholar]
  11. Chien, Y.H. (2017). Developing a pre-engineering curriculum for 3d printing skills for high school technology education. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2941-2958. [Google Scholar]
  12. Demir Kuzu, E. B. K., Çaka, C., Tuğtekin, U., Demir, K., İslamoğlu, H., & Kuzu, A. (2016). Üç boyutlu yazdırma teknolojilerinin eğitim alanında kullanımı: türkiye’deki uygulamalar. [Usage in education of three dimensional printing technology: Applications in Turkey]. Ege Eğitim Dergisi, 2(17), 481-503. [Google Scholar]
  13. Doğru, E., & Aydın, F. (2017). Coğrafya öğretmenlerinin teknolojik pedagojik alan bilgisi ile ilgili yeterliliklerinin incelenmesi. [Investigation of geography teachers' competencies related to technological pedagogical content knowledge]. Journal of History Culture and Art Research, 6(2), 485-506. doi:http://dx.doi.org/10.7596/taksad.v6i2.686 [Google Scholar] [Crossref] 
  14. Eisenberg, M. (2013). 3D printing for children: What to build next? International Journal of Child-Computer Interaction, 1(1), 7-13 [Google Scholar]
  15. Ersoy, Y. (2003). Matematik okur yazarlığı-II: Hedefler, geliştirilecek yetiler ve beceriler. Matematikçiler Derneği, 17, 2009. [Google Scholar]
  16. Eryiğit, P. (2010). Üç boyutlu dinamik geometri yazılımı kullanımının 12. sınıf öğrencilerinin akademik başarıları ve geometri dersine yönelik tutumlarına etkileri [Effects of three dimensional dynamic geometry software usage on 12th grade students' academic achievement and attitudes towards geometry course]. (Unpublished master’s thesis). Dokuz Eylül University. [Google Scholar]
  17. Gibson, I., Rosen, D., & Stucker, B. (2010). Additive manufacturing technologies. New York, NY: Springer.  [Google Scholar]
  18. Graham, C. R., Burgoyne, N., Cantrell, P., Smith, L., St. Clair, L., & Harris, R. (2009). TPACK development in science teaching: Measuring the TPACK confidence of inservice science teachers. TechTrends, Special Issue on TPACK, 53(5), 70-79. [Google Scholar]
  19. Greenhalgh, S., & Greenhalgh, S. (2016). The effects of 3D printing in design thinking and design education. Journal of Engineering, Design and Technology, 14(4), 752-769. doi: 10.1108/JEDT-02-2014-0005 [Google Scholar] [Crossref] 
  20. Golub, M., Guo, X., Jung, M., & Zhang, J. (2016). 3D printed ABS and carbon fiber reinforced polymer specimens for engineering education. In Rewas, (pp. 281-285). Springer International Publishing. doi: 10.1007/978-3-319-48768-7_43  [Google Scholar] [Crossref] 
  21. Güleryüz, H. Dilber, R. ve Erdoğan, İ., (2019). Stem Uygulamalarında Öğretmen Adaylarının 3D Yazıcı Kullanımı Hakkındaki Görüşleri. Ağrı İbrahim Çeçen Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 5 (2), 1-8. [Google Scholar]
  22. Hamidi, F., Young, T. S., Sideris, J., Ardeshiri, R., Leung, J., Rezai, P., & Whitmer, B. (2017). Using robotics and 3D printing to introduce youth to computer science and electromechanical engineering. Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, 942-950. doi: 10.1145/3027063.3053346 [Google Scholar] [Crossref] 
  23. Horowitz, S. S., & Schultz, P. H. (2014). Printing space: Using 3D printing of digital terrain models in geosciences education and research. Journal of Geoscience Education, 62(1), 138-145. doi: 10.5408/13-031.1 [Google Scholar] [Crossref] 
  24. Huleihil, M. (2017). 3D printing technology as innovative tool for math and geometry teaching applications. In IOP Conference Series: Materials Science and Engineering, 164(1). IOP Publishing. [Google Scholar]
  25. Jang, S.Y., & Tsai, M.F. (2013). Exploring the TPACK of Taiwanese secondary school science teachers using a new contextualized TPACK model. Australasian Journal of Educational Technology, 29(4), 566-580. [Google Scholar]
  26. Jo, W. (2016). Introduction of 3d printing technology in the classroom for visually impaired students. Journal of Visual Impairment & Blindness, 110(2), 115-121. [Google Scholar]
  27. Jordan, K. (2011). Beginning teacher knowledge: Results from a self-assessed TPACK survey. Australian Educational Computing, 26(1), 16-26. [Google Scholar]
  28. Karadeniz, Ş., & Vatanartıran, S. (2015). Sınıf öğretmenlerinin teknolojik pedagojik alan bilgilerinin incelenmesi. [Examination of technological pedagogical content knowledge of classroom teachers]. Elementary Education Online, 14(2), 1017-1028.  [Google Scholar]
  29. Karaduman, H. (2018). Soyuttan somuta, sanaldan gerçeğe: öğretmen adaylarının bakış açısıyla üç boyutlu yazıcılar. [From abstract to concrete, from virtual to reality: three-dimensional printers from the perspective of prospective teachers].Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 8 (1), 273-303. [Google Scholar]
  30. Karataş, A. (2014). Lise öğretmenlerinin fatih projesi’ni uygulamaya yönelik teknolojik pedagojik alan bilgisi yeterliliklerinin incelenmesi: Adıyaman ili örneği. [Investigation of technological pedagogical content knowledge competencies for high school teachers to implement Fatih project: A case study in Adıyaman]. (Unpublished master’s thesis). Sakarya University. [Google Scholar]
  31. Lee, M. H., & Tsai, C. C. (2010). Exploring teachers’ perceived self-efficacy and technological pedagogical content knowledge with respect to educational use of the world wide web. Instructional Science: An International Journal of the Learning Sciences, 38(1), 1-21. [Google Scholar]
  32. Lütolf, G. (2013). Using 3D printers at school: The experience of 3drucken.ch. Canessa, E., Fonda, C., & Zennaro, M. (Ed.), in Low-cost 3D printing for science, education and sustainable development (p.149-159). ICTP Science Dissemination Unit. [Google Scholar]
  33. Maloy, R., Kommers, S., Malinowski, A., & LaRoche, I. (2017). 3D modeling and printing in history/social studies classrooms: Initial lessons and insights. Contemporary Issues in Technology and Teacher Education, 17(2), 229-249. [Google Scholar]
  34. Nichols, S., Schuster, T., & Ball, M. (2016). Using a public library makerspace to bring STEM education to low-income youth. Gulf South Summit on Service-Learning, 38. [Google Scholar]
  35. Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education, 21, 509 -523. [Google Scholar]
  36. Özbek A. (2014). Öğretmenlerin yenilikçilik düzeylerinin TPAB yeterlikleri üzerindeki etkisinin incelenmesi. [Investigation of the effects of teachers' innovation levels on TPACK competencies]. (Unpublished master’s thesis). Necmettin Erbakan University.  [Google Scholar]
  37. Özsoy, K., & Duman, B. (2017). Eklemeli imalat (3 boyutlu baskı) teknolojilerinin eğitimde kullanılabilirliği [Usability of additive manufacturing (three dimensional printing) technologies in education]. International Journal of 3D Printing Technologies and Digital Industry, 1(1), 36-48. [Google Scholar]
  38. Potter, B.N., & Johnston, C.G. (2006). The effect of interactive on-line learning systems on student learning outcomes in accounting. Journal of Accounting Education, 24, 16–34. [Google Scholar]
  39. Sancar-Tokmak, H., Yavuz-Konokman, G., & Yanpar-Yelken, T. (2013). Okul öncesi öğretmen adaylarının teknolojik pedagojik alan bilgisi öz güven algılarının incelenmesi. [Investigation of preschool teachers' perceptions of technological pedagogical knowledge knowledge self-confidence]. Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 14(1), 35–51. [Google Scholar]
  40. Sarıkaya, M., Kaya, V. H., Akdağ, G., Ay, İ., & Doğan, A. (2012). Öğretmen adaylarının teknolojik pedagojik alan bilgilerine ilişkin öz güvenlerinin belirlenmesi. [Determination of teacher candidates' self-confidence about technological pedagogical content knowledge.]. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi Özet kitapçığı, Niğde, s. 124.  [Google Scholar]
  41. Schelly C., Anzalone, G., Wijnen, B., & Pearce, J.M. (2015). Open-source 3-D printing technologies for education: bringing additive manufacturing to the classroom. Journal of Visual Languages and Computing, 28, 226–237. [Google Scholar]
  42. Şad, S.N., Açıkgül, K., & Delican, K. (2015). Eğitim fakültesi son sınıf öğrencilerinin teknolojik pedagojik alan bilgilerine (TPAB) ilişkin yeterlilik algıları. [Proficiency perceptions of technological pedagogical content knowledge (TPACK) of faculty of education final year students. Journal of Theoretical Educational Science, 8(2), 204-235. [Google Scholar]
  43. Savaş, M., Öztürk, N., & Tüzün, Y. Ö. (2010). Fen bilgisi öğretmen adaylarının fen eğitiminde teknoloji kullanımı ile ilgili görüşleri ile ilişkili olan faktörlerin belirlenmesi. [Determination of factors related to science teacher candidates' views on technology usage in science education]. IX Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi Özet Kitapçığı, İzmir: Güler Matbaacılık. [Google Scholar]
  44. Taştı, M. B., Avcı Yücel, Ü., & Yalçınalp, S. (2015). Matematik öğretmen adaylarının üç boyutlu modelleme programı ile öğrenme nesneleri geliştirme süreçlerinin incelenmesi.[ Investigation of mathematics teacher candidates' development of learning objects with three-dimensional modeling program]. International Journal of Social Sciences and Education Research, 1 (2), 411-423. [Google Scholar]
  45. Taylor, B. (2016). Evaluating the benefit of the maker movement in K-12 STEM education. Electronic International Journal of Education, Arts, and Science, (EIJEAS), 2. [Google Scholar]
  46. Timur, B. (2011). Fen bilgisi öğretmen adaylarının kuvvet hareket konusundaki teknolojik pedagojik alan bilgilerinin gelişimi.[Development of science teacher candidates' technological pedagogical content knowledge on force movement]. (Unpublished doctoral dissertation). Gazi University. [Google Scholar]
  47. Timur, B., & Taşar, M. F. (2011). Teknolojik Pedagojik Alan Bilgisi Öz Güven Ölçeğinin (TPABÖGÖ) Türkçe'ye Uyarlanması. Gaziantep University Journal of Social Sciences, 10(2).839 -856 [Google Scholar]
  48. Timur, B., & İmer-Çetin, N. (2014). Fen ve teknoloji öğretmenlerinin teknolojik pedagojik alan bilgi düzeylerinin çeşitli değişkenler açısından incelenmesi, [Investigation of science and technology teachers' technological pedagogical content knowledge levels in terms of various variables]. 1. Avrasya Eğitim Araştırmaları Kongresi, İstanbul Üniversitesi, İstanbul.  [Google Scholar]
  49. Vaccarezza, M., & Papa, V. (2015). 3D printing: A valuable resource in human anatomy education. Anatomical Science International, 90(1), 64-65. doi: 10.1007/s12565-014-0257-7  [Google Scholar] [Crossref] 
  50. Yanpar-Yelken, T., Sancar-Tokmak, H., Özgelen, S. , & İncikabı, L. (2013). Fen ve matematik eğitiminde teknolojik pedagojik alan bilgisi temelli öğretim tasarımları. [Instructional designs based on technological pedagogical content knowledge in science and mathematics education]. Ankara: Anı Yayıncılık. [Google Scholar]